Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study
نویسندگان
چکیده
Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic species Staphylococcus carnosus isolate TM300 is used as bacterial probe. With the exact same bacterium, hydrophobic and hydrophilic surfaces can be probed and compared. We find that as far as 50 nm from the surface, attractive forces can already be recorded, an indication of the involvement of long-ranged forces. Yet, comparing the surfaces of different surface energy, our results corroborate the model that large, bacterial cell wall proteins are responsible for adhesion, and that their interplay with the short-ranged hydrophobic interaction of the involved surfaces is mainly responsible for adhesion. The ostensibly long range of the attraction is a result of the large size of the cell wall proteins, searching for contact via hydrophobic interaction. The model also explains the strong (weak) adhesion of S. carnosus to hydrophobic (hydrophilic) surfaces.
منابع مشابه
Quantifying Molecular-Level Cell Adhesion on Electroactive Conducting Polymers using Electrochemical-Single Cell Force Spectroscopy
Single Cell Force Spectroscopy was combined with Electrochemical-AFM to quantify the adhesion between live single cells and conducting polymers whilst simultaneously applying a voltage to electrically switch the polymer from oxidized to reduced states. The cell-conducting polymer adhesion represents the non-specific interaction between cell surface glycocalyx molecules and polymer groups such a...
متن کاملRapid and Serial Quantification of Adhesion Forces of Yeast and Mammalian Cells
Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by ...
متن کاملInvestigating single molecule adhesion by atomic force spectroscopy.
Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyse...
متن کاملStudy of the Interaction of Cinnamaldehyde with Alpha-lactalbumin: Spectroscopic and Molecular Docking Investigation
Cinnamaldehyde is an important compound of the cinnamon essential oil, and it is responsible for the most of the health benefits of cinnamon. Enriching foods such as milk with cinnamaldehyde can lead to greater utilization of cinnamaldehyde properties. In this study, we investigated the interaction of cinnamaldehyde with bovine alpha-lactalbumin. Analyzing the spectrum of alpha-lactalbumin in t...
متن کاملSingle-cell force spectroscopy.
The controlled adhesion of cells to each other and to the extracellular matrix is crucial for tissue development and maintenance. Numerous assays have been developed to quantify cell adhesion. Among these, the use of atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) has recently been established. This assay permits the adhesion of living cells to be studied in near-physiol...
متن کامل